Mass and stiffness calibration of nanowires using thermally driven vibration.
نویسندگان
چکیده
Cantilevered or suspended nanowires show promise for force or mass sensing applications due to their small mass, high force sensitivity and high frequency bandwidth. To use these as quantitative sensors, their bending stiffness or mass must be calibrated experimentally, often using thermally driven vibration. However, this can be difficult because nanowires are slightly asymmetric, which results in two spatially orthogonal bending eigenmodes with closely spaced frequencies. This asymmetry presents problems for traditional stiffness calibration methods, which equate the measured thermal vibration spectrum near a resonance to that of a single eigenmode. Moreover, the principal axes may be arbitrarily rotated with respect to the measurement direction. In this work, the authors propose a method for calibrating the bending stiffness and mass of such nanowires' eigenmodes using a single measurement taken at an arbitrary orientation with respect to the principal axes.
منابع مشابه
Free vibration analysis of steel framed structures
This study based on free vibration analysis and study the behavior of framed structure under different frequency of vibration using ANSYS software and shaking table. A small scale uni-axial shaking table was prepared in laboratory, which can produce lower to moderate vibration, regarding frequency and velocity. Moment resisting framed structures constructed with connecting beam and column eleme...
متن کاملForced vibration of piezoelectric nanowires based on nonlocal elasticity theory
In this paper, a numerical solution procedure is presented for the free and forced vibration of a piezoelectric nanowire under thermo-electro-mechanical loads based on the nonlocal elasticity theory within the framework of Timoshenko beam theory. The influences of surface piezoelectricity, surface elasticity and residual surface stress are taken into consideration. Using Hamilton’s principle, t...
متن کاملDynamic Stiffness Method for Free Vibration of Moderately Thick Functionally Graded Plates
In this study, a dynamic stiffness method for free vibration analysis of moderately thick function-ally graded material plates is developed. The elasticity modulus and mass density of the plate are assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents whereas Poisson’s ratio is constant. Due to the variation of the elastic properties through ...
متن کاملVibration of Piezoelectric Nanowires Including Surface Effects
In this paper, surface and piezoelectric effects on the vibration behavior of nanowires (NWs) are investigated by using a Timoshenko beam model. The electric field equations and the governing equations of motion for the piezoelectric NWs are derived with the consideration of surface effects. By the exact solution of the governing equations, an expression for the natural frequencies of NWs with ...
متن کاملFree Vibration of Functionally Graded Cylindrical Shell Panel With and Without a Cutout
The free vibration analysis of the functionally graded cylindrical shell panels with and without cutout is carried out using the finite element method based on a higher-order shear deformation theory. A higher-order theory is used to properly account for transverse shear deformation. An eight noded degenerated isoparametric shell element with nine degrees of freedom at each node is considered....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanotechnology
دوره 22 29 شماره
صفحات -
تاریخ انتشار 2011